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Abstract-In this paper, we introduce Nonadditive Information 
Theory through the axiomatic formulation of Tsallis entropy. 
We show that systems with transitions from high 
dimensionality to few degrees of freedom are better described 
by nonadditive formalism. Such a biological system is the brain 
and brain rhythms is its macroscopic dynamic trace. We will 
show with simulations that Tsallis entropy is a powerful 
information measure, and we present results of  brain 
dynamics analyzed using EEG recordings from a brain injury 
model.  
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I. INTRODUCTION 

 
Nonadditi vity, or nonextensivity, is an important concept 

in the field of information theory. A system is nonextensive 
if it contains long-range interaction, long-range memory, or 
(multi)fractal structure  [1],[2],[3]. In such a system, a 
macroscopic dynamic quantity is not simply proportional to 
the microscopic degrees of freedom but there are moments 
where the system unpredictably looses its high 
dimensionality (described by  stochastic process) and falls to 
a low dimensional deterministic system (either linear or 
not). Classical paradigms in brain dynamics is the rise of an 
epileptic crisis or the burst suppression EEG following  the 
resuscitation from cardiac arrest or asphyxia [13],[14].    In 
this respect, a nonextensive generalization of Boltzmann-
Gibbs statistical mechanics formulated by Tsalli s [4] is 
better suited to describe such phenomena. 
 
 

II . NONADDITIVE INFORMATION THEORY 
 

In the development of the foundations of classical 
information theory, Khinchin [5] presented a mathematicall y 
rigorous proof of a uniqueness theorem for the Shannon 
entropy based on the additivity law for a composite system 
in terms of the concept of conditional entropy. Suppose the 
total system can be divided into two subsystems, A and B, 
and let pi j(A,B) be the normalized joint probabilit y of  
finding A and B in their ith and jth states, respectively. Then 
the conditional probabilit y of B given A found in its ith state 

is given by )(/),()( ApBApABp iijij = , which leads 

to the celebrated Bayes multipli cation law 

)()(),( ABpApBAp ijiij = ,  (1) 

where  pi(A) is the marginal probabili ty distribution: 

∑=
j iji BApAp ),()( . It should be noted that this form of 

factorization can always be establi shed in any physical 
situation. The  Shannon entropy of the composite system is  

),(ln),(),(
,

BApBApkBAS ij
ji

ijB∑−= 1. (2) 

Combining (1) and (2) yields 

),()(),( ABSASBAS +=   (3) 

where )( ABS stands for the conditional entropy [6]. 

In the particular case when A and B are statisticall y 
independent, pi j(B|A)=pj(B) and from (1) and (2) is drawn 
out the additi vity law S(A, B) =S(A) +S(B). We emphasize 
here that there is a natural correspondence relation between 
the multiplication law and the additivity law: 

)()(),( ABpApBAp ijiij = � ),()(),( ABSASBAS +=        (4) 

When the above discussion is generalized to any composite 
system there are theoretical and experimental considerations 
where  systems do not obey to the additivity law [7]. In this 
respect, a nonextensive generalization of Boltzmann-Gibbs 
statistical mechanics formulated by Tsalli s [4] is better 
suited to describe such phenomena. In this formalism, 
referred to as nonextensive statistical mechanics, Shannon 
entropy in (2) is generalized as follows: 
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where q  is a positive parameter. This quantity converges to 
the Shannon entropy in the limit q � 1. Like the Shannon 
entropy, it is nonnegative, possesses the definite concavity 
for all q>0, and is known to satisfy the generalized H-
theorem . Nonextensive statistical mechanics has found a lot 
of physical applications. A standard discussion about the 
nonadditivity of the Tsallis entropy Sq(p) assumes 
factorization of the joint probabilit y distribution in (1) 

( )()(),( BpApBAp jiij = ). Then, the Tsalli s entropy is 

found to yield the so-called pseudoadditivity  
 

)()()1()()(),( BSASqBSASBAS qqqqq −++= .   (6) 

Clearly, the additivity holds if and only i f q � 1. However, 
there is a logical diff iculty in this discussion. As mentioned 

                                                
1 We use throughout the paper   dimensionless units where the Boltzmann  
constant, kB is set equal to 1  
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above, Tsallis' nonextensivity was devised in order to treat a 
system with, for example, long-range interactions. On the 
other hand, physicall y, “dividing the total system into the 
subsystems" implies that the subsystems are made spatiall y 
separated in such a way that there is no residual interaction 
or correlation. If the system is governed by a long-range 
interaction, the statistical independence can never be 
realized by any spatial separation since the influence of the 
interaction persists at all distances. In fact, the probabilit y 
distribution in nonextensive statistical mechanics does not 
have a factorizable form even if systems A and B are 
dynamically independent, and therefore correlation is 
always induced by nonadditivity of statistics [8]. 
Thus, it is clear that the assumption of the factorized joint 
probabilit y distribution is not physically pertinent for 
characterizing the nonadditi vity of the Tsalli s entropy. 
These considerations naturall y lead us to the necessity of 
defining the conditional entropy associated with the Tsallis 
entropy. 

To overcome the above mentioned logical diff iculty and 
to generalize the correspondence relation in (4) 
simultaneously, Santos [9] proposed a generalization of 
Shannon’s theorem to Tsalli s entropy, Hotta et Joichi [10] 
investigated composabilit y and generalized (Tsallis) entropy 
and Abe [11] extended the work of Santos [9] generalizing 
the Khinchin axioms for the ordinary information theory in a 
natural way to the nonextensive systems. 

 Along the lines of recent paper of Abe and Rajagopal 
[12] we consider the Tsalli s entropy of the conditional 

probabilit y distribution )(/),()( ApBApBAp iijij =  as   

)()1(1

)(),(
)(

ASq

ASBAS
ABS

q

qq
q −+

−
= .   (7) 

From this, we immediately  see that  

)()()1()()(),( ABSASqABSASBAS qqqqq −++=  (8) 

which is a natural nonaddititive generalization of  (3) in 
view of pseudoadditi vity in (6). Therefore the 
correspondence relation in  (4) becomes now 

)()(),( ABpApBAp ijiij = �  

)()()1()()(),( ABSASqABSASBAS qqqqq −++= .    (9) 

This equation coincides with the (6) of pseudoadditi vity 
when the two systems A and B are independent.   

In this way the nonadditive Tsalli s entropy was 
formulated according to the Khinchin  axioms of 
information theory and the contradiction between 
dependency (Bayes law) and long range interaction 
(nonadditivity)  is removed. Summarizing, we have 
establi shed on firm mathematical grounds, a general 
criterion for consistent testing of the independence between 
random variables, which we propose as a practical tool to 
analyze the EEG recordings. The results depends upon the 
entropic index q. It is expected that, for every specific use, 
better discrimination can be achieved with appropriate 
ranges  of values q.  
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Fig. 1. A synthetic signal (top) and Shannon and Tsall is entropy for 
different q index values(q=1.5,3,5). The synthetic signal is composed by:  
(I) one realization of  Gaussian distribution with zero mean and standard 
deviation equals 1, (II)   one  realization of   uniform  distribution in the 
interval  [ -2,2], (II I)  EEG recordings from baseline (III) and early  recovery 

(IV). For q=3 the Tsallis entropy is sensitive enough to distinguish between 
signals with different probabili ty distribution function and to differentiate 
the baseline EEG from early recovery  EEG.   
 



III . SIMULATIONS 
 

We explore the use of parameterized   Tsalli s entropy 
(function of q) to monitor the changes of EEG undergoes in 
different conditions and to compare it with the entropy of 
signals with known probabilit y distribution function (PDF). 
In particular, we compare the Tsalli s and Shannon entropy 
measures on a synthetic signal.   The synthetic signal s(k)  is 
composed  of four parts of 2000 samples each with different 
PDF’s: (I) Gaussian distribution with zero mean and 
standard deviation �  = 1, (II) a uniform distribution in the 
interval [-2,2], (II I) an EEG recording from baseline, and 
(IV) an EEG recording from early recovery after 
ischemic/cardiac arrest brain injury [13]. Figure 1, from top 
to bottom,  shows one realization of signal s(t) and  Shannon 
and Tsallis entropies (q=1.5, 3 and 5)  after 50 runs.  

The following points are of importance: 
1) The entropy is maximum for uniform 

distribution. The entropy of baseline EEG lies 
between the two extreme distributions; Gaussian 
and uniform, preserving a subgaussian 
distribution.   

2) Transition from one distribution to the next is 
properly revealed.   

3) Shannon and Tsalli s entropy for q=1.5 are more 
sensitive than Tsallis entropy for q=3 and 5 for 
segmenting the different parts of the signal. 

4) Tsalli s entropy for q=5 has greater discriminant 
power between parts I,II ,III and the part of the 
signal from  recovery EEG (IV).  

 
 

IV. CONCLUSIONS 
 

We have constructed the nonadditive conditional entropy 
based on the axiomatic foundations of classical information 
theory and the pseudoadditivity of the Tsalli s entropy. 
Furthermore we have shown examples where the  
nonadditive entropy provides a novel statistical description 
of the brain rhythms during asphyxic injury and recovery.  
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